New Observational Directions

- SeaPRISM-Ocean Color
- Cloud Optical Depth-Alexander Marshak
- BRDF-New improved protocol
- Multi spectral polarimeter
- CO₂ radiometer

Campaigns

- Passive participation supporting NASA campaigns (NENA, MODIS, MISR, GLAS)
- Active participation but unfunded (ACE-Asia, SAFARI2000, SE Asia, AMAS)
- Active and Funded Participation (BOREAS, LBA-ECO)

τ_r / τ_e discrimination from spectral curvature

Goddard Space Flight Center

Goddard Space Flight Center

April 8, 2003 - Numerous fires in India, Burma, and Laos and NW Thailand - Om Koi: AOD(500nm)=0.45 at Aqua (MODIS) Satellite Overpass time

Washington, Paris, and Mexico City data from Dubovik et al. [2002] Table 1.

February 25, 2003 - High AOD (1.12 at 500 nm) at Phimai; 8-Day Back Trajectory suggests transport of both pollution from industrial area SE of Bangkok and possibly also smoke and pollution from SW Cambodia and Viet Nam

SUMMARY AND CONCLUSIONS

- Preliminary data suggest that during the 2nd half of the dry season the aerosol is quite strongly absorbing in both urban and rural sites in SE Asia ($\omega_{0550} \sim 0.895 0.915$)
- Aerosol size distributions are dominated by fine mode particles (radius < 0.6 micron) with very consistent size of fine particles at all sites ($r_v \sim 0.15$ 0.16 μm at $\tau_{a440} = 0.7$)
- Preliminary data from Phimai suggest a dynamic aerosol model with particle size increasing as optical depth increases, and ω_0 also increasing as optical depth increases
- Continuing monitoring in the beginning of the dry season will characterize the regional aerosol before biomass burning aerosols are added to the mixture

The averaged optical properties of various aerosol types

Maritime aerosol

Duck, North Carolina, March 1999

Proposed Additional Data

- Modis
 - AOD retrievals (MODLAND, MOVAS)
 - Surface Reflectance (MODLAND, MOVAS)
 - Clouds-Cirrus (MOVAS)
 - Radiances-Level 1b
- MISR-AOD
- GLAS-Extinction profile
- CERES-TOA flux
- TOMS-AOD, AI
- ATRAIN-????
- POLDER-AOD
- BSRN-Surface Flux
- New Products-Direct radiative forcing (CERES, AERONET & BSRN)

New Developments from the AERONET Program

- New Extended wavelength instrument supported
- Ancillary data sets added to AERONET website (BT, MPL with sat imagery and GOCART)
- Download Tool Inversions QA'd, 'Recommended'
- Spheroid model inversions supported
- AEROSOL climatology supported for AOD
- Network open for expansion into Asia, oceans, high latitudes, Africa
- Plans for inversion product climatology
- Plans for improved precipitable water retrievals
- Plans for distributed calibration centers
- SeaPRISM and BRDF instruments supported

Points of Success

- Core funding
- Scientific research component
- Centralization of operations

Acknowledgments

 We thank Dr. Diane Wickland for the critical, initial and continuing support of this lifeform